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Walk 

Tn, the expectation of the square of the number of distinct sites occupied by a 
random walk in steps 1 through n, is obtained from its relation to the dual first 
occupancy probability F~j(x,x'), and the latter quantity is obtained from a 
recursion with the first occupancy probability Fk(x"). The variance V, of the 
number of distinct sites occupied is calculated directly from T,; the procedure is 
illustrated by the calculation of V, (4096 ~>n) and the derivation of asymptotic 
expansions for V, for a particular random walk in dimensions 1 through 3. 

KEY WORDS:  Number of distinct sites; asymptotic expansions; generating 
functions; one dimension (l-d); two dimensions (2-d); three dimensions (3-d); 
body-centered cubic (b.c.c) random walk. 

INTRODUCTION 

Consider an aggregate of M equivalent lattice points. Such aggregates have 
the property that for each point the set L of M displacements to all points 
is identical, an example being a d-dimensional Euclidean lattice torus. (1) A 
step of a random walk is a displacement by I~L; 1 is chosen with the 
probability PI(I). The walk then occupies the lattice point it is displaced to 
by the vector !. The convolution of j probabilities PI(I) gives the 
probability Pj(x) of being displaced by x from the point of origin on step j 
and defines random walk. The number of distinct sites occupied in steps 1 
through n is a random variable--the range of the random walk. 

This paper is concerned with Vn, the variance of the range of the ran- 
dom walk. The expectation of the range En is well-characterized; (1) 
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therefore, to find Vn it is sufficient to focus on Tn the expectation of the 
square of the range because 

v.=_ Tn-E  (1) 

Tn is also (=) the probability that each of two sites, randomly selected with 
replacement, has been occupied in steps 1 through n multiplied by the 
square of the number of lattice points,= and therefore can be found by a 
summation of the dual first-occupancy probability F,j(x, x'), which is the 
probability that the site displaced by x from the origin is occupied for the 
first time on step i, and that the site displaced by x' from the origin is 
occupied for the first time on step j. 

The theory of the range of a random walk was initiated primarily by 
Dvoretzky and ErdSs (=) and there was subsequent significant progress in 
characterizing the random variable made principally by Jain and 
Pruitt. (3'4'5'6) In particular, it is directly relevant that formulas for Vn were 
obtained for arbitrary walks on infinite lattices in dimensions 1 through 6 
in the limit that n is large. However, these were not asymptotic series and 
there is no indication of how large n has to be before the given formulas 
become valid. This paper develops methods for the calculation of V~, useful 
for small n, and for the generation of asymptotic series for V~, useful for 
large n. The methods are illustrated for a particular random walk in dimen- 
sions 1 through 3, and the leading terms of the asymptotic series 
corroborate the large n formulas discussed above. 

THE VARIANCE 

The fundamental probabilities for a random walk are the Pj(x), the 
probabilities of being displaced from the point of origin to the site x on the 
j th  step. One can obtain the Fj(x), the probabilities of being displaced from 
the point of origin to the site x for the first time on the j th  step, (7) recur- 
sively from the Pj(x) 

j - I  
F j ( x ) = P j ( x ) -  ~ Pj_i(o) Fi(x) j>~l (2) 

i=1 

2 The correlation is demonstrated in the following context. Each of the W possible walks is 
represented by a box containing M balls, one corresponding to each lattice point. In a given 
box, one distinguishes a subset of balls, for example, by making them red-- the  number of 
balls in the subset divided by M being the fraction of distinct sites occupied in the walk 
represented by the box. The probability t of selecting two red balls, if one randomly chooses 
two balls from the box with replacement, is the square of this fraction. The arithmetic 
average t- of the value t from all the boxes is the average of the square of the fraction of balls 
that are red. 
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The expectation of the range in steps one through n Eft can now be found 
using the theorem of Dvoretzky and Erd6s/2) relating the probability of a 
walker reaching a new site to the probability of nonreturn to its origin 3 

E 
x ~ L  

j - - 1  

 j(x) = 1 -  F (o) 
i ~ l  

j = l  i = 1  

(3) 

One also calculates S, ,  the expectation of the range in steps zero through 
n; (8) the simple relationship is 

Ef t  ~ S t / -  1 

To obtain Vn we introduce the dual first-occupancy probability 
F~(x, x ')  that a walker first occupy the site with a displacement x from its 
origin on the ith step and first occupy the site with the displacement x' 
from its origin on the j t h  step. These probabilities have the following recur- 
sion with the probabilities Fk(l) 

X~---X t 

f/j(x, x) = 6•Fi(x) 

X#X'  

{ 1 fu(x, x ' ) = E / _ / ( x ' - x  ) f i ( x ) -  2 f,k(x, x') 
k = l  

G ( x ,  x')  = 0 

fu(x,  x ')  = Fi j(x - x ')  (x') - Z Fsk(X" x) 
k = l  

i<j  

i=j  

i>j  

(4a) 

(4b) 

Some examples of elementary formulas for the probabilities occurring in 
(4a) and (4b) are 

F I ( X ' -  x ) 

= P I ( x ' - x )  

3 Although the theorem of Dvoretzky and Erd6s was proven for an infinite "cubic" lattice, one 
can easily prove the theorem for any finite lattice with equivalent sites using generating 
functions. 
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r j ( x '  - x) 

= E 
XI,X2, X3,'-',Xj - 1 ~ LI  

j > l  

Eli(x, x') 

= Fj_ l(x' - x) Fl(X) 

j > l  

r/j(x, x') 

= Fj_ i(x' - x) Z 
Xl,X2,X3,...,xi 1 ~ L2 

j > i > l  

PI( x ' -  Xl) PI(x1 - x2) Pl(X2 - x3) ' " "Pl(xj-  1 - -  X) 

PI(x - xl) PI(Xl - x2)""' PI(Xi_ 1) 

T. = i 2 Fij(x', x") 
i , j = l  x ' , x "  e L 

= i 2 F~(xo-X, Xo) 
i , j=1  x0,x  e L 

- i 2 rij(x) 
i , j = l  x e L  

= 2 E EPj(x)+Fj(x)3 
j = l  x ~ L  

i (s) 
j = l  

with F0(x ) and Fj defined in passing and with the following additional 
definition 

j - - I  

Fj(x) - ~ [Fij(x) + Fji(x)] 
i = I  

that 

PI(I) is the probability of being displaced by I in one step, L 1 is all lattice 
points in L but x', and L2 is all lattice points in L but x and x'. These 
elementary formulas and their analogues for the other cases can be 
rearranged to give (4a) and (4b), which is a proof that the quantities one 
obtains from the recursion are identical with those defined by the elemen- 
tary formulas. This method of proof is adopted from the proof of the recur- 
sion between Fj(x) and  Pj(x).  (9) 

From the definition of the dual first occupancy probability, it follows 
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The recursion for the Fj(x) follows from (4a) and (4b) 

F ; (x )=  ~ Fj_i(x ) [ 2 . F i ( x ' ) 3 - P , ( x )  x # 0  
i = 1  x 

= 0  x = 0  (6) 

under the assumption that the random walk has inversion symmetry, that 
is, that Ff l )  equals Fj(- I ) .  In (5), one uses the equivalence of the lattice 
points to reduce a double sum over the lattice to a single sum. 
Nevertheless, to obtain T, a separate function must be determined for each 
lattice point that can be occupied by the random walk, With T, determined 
from (5) and (6), one can calculate V, from (1), using (3) to find E, .  

A P A R T I C U L A R  R A N D O M  W A L K  

To illustrate the use of (3)-(6), we calculate Vn for analogous random 
walks on an infinite lattice in dimensions one through three. The walk is 
separable; the probability of being displaced to each of the 2 a vertexes of a 
d-dimensional cube is 2 - a  and illustrated in Fig. 1. 

We have numerically solved for the F;(x), performed the sum over lat- 
tice sites indicated in (5), and calculated the En to get the Vn for 4096 >n.  
The results are shown in Fig. 2. A fast-fourier transform was used to 
deconvolve and thereby obtain the P;(x) directly from the Pj(x); a com- 
puter program included at the end of the Appendix sets out the method, A 
complete listing of the data graphed in Fig. 2 and the other programs used 
herein is available. 4 Selected values of E, ,  T,, and V, are given in Table I. 
The accuracy of the numerical method was determined by increasing the 
number of lattice points and the number of transform points by a factor of 
2 until no further changes in the reported values would be expected on 
iteration, as no rigorous error estimate is available. In three dimensions all 
sites within a cube of 680 sites centered on the origin were included and the 
number of transform points is 216  . 

The asymptotic behavior of V, is found using generating functions; the 
methods are given in the Appendix. The results follow. One dimension 

Vn ~ 0.22610963,..., n + O(n 1/2) (A.6) 

E~ ~ 2.5464791,..., n + O(n 1/2) 

4 The probabilities of being at the origin and of first return to the origin on even step numbers 
and the expectation, expectation of the square, and variance of the range of the separable 
random walk in dimensions one through three on step numbers one through 4096 are given 
to seven places. See document no. 04401 of the ASIS National Auxiliary Publication Service, 
c/o Microfiche Publications, P. O. Box 3513, Grand Central Station, New York, N.Y., 
10163. 
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( - i ) o ~ - - - O - - - - . , . ~  (j) 

(-I,I) (I,I) 

C-I,-t) (i,-i) 

(-I,-I,I) 

(1~- I~1 ) ~ o e  e 

(t,-icl) 

(-I,1,1) 
iflfl)~ e ~  

i e e ~ ~ ( - I , i / - F )  

(I,I,-I) 

Fig. l. The particular random walk that is used in the text, the separable walk, is illustrated. 
In one dimension (top) the displacements (+ 1) and ( - 1 )  each occur with probability 1. In 
two dimensions (middle) the displacements (+1, +1), (+1, -1 ) ,  ( - 1 ,  +1), and ( - 1 ,  - 1 )  
each occur with probability �88 In three dimensions (bottom) the displacements (+  1, + 1, + 1), 
(+1, + 1 , - l ) ,  (+1 , - -1 ,  +1), (--1, +1, +1), ( + 1 , - 1 , - - 1 ) ,  ( - 1 ,  + 1 , - 1 ) ,  
( - 1, -- 1, + 1 ), and ( - 1, - 1, - 1) each occur with probability ~. 
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Two dimensions 

V, ~ 16.768193,..., n2(log 8n) - 4 -  16.399478 ..... n2(log 8n) 5 

+ 106.67852,..., n2(log 8n) -6 + OEn2(log 8n) 7] (A.10) 

E ] ~ 9.8696044,..., n2(log 8n) -2 + O[n2(log 8n)-3] 

Three dimensions 

Vn ~ 0.21514511,..., n log n -0.8970 ..... n + O(n m) 

E,  2 .-~ 0.51519379,..., n 2 + O(n 3/2) (A.14) 

All coefficients g ivento  eight places are expressible in terms of constants 
and are known exactly (see Appendix). On the other hand, the coefficient 
given to four places in (A.14) was determined numerically. All coefficients 
have been "rounded up" if the digit one beyond the last given exceeded 4. 

The asymptotic formulas for the variance, (A.6), (A.10), and (A.14), 
are plotted alongside the computed values in Fig. 2. In Table II, selected 
values of the asymptotic formulas for T~ (from the Appendix) and V,, are 
given. Having more than one term in the asymptotic series greatly 
improves the agreement of these series with the computed values in two 
and three dimensions for n ~ 4096. The agreement is improving more 
rapidly in three dimensions as is expected from the orders of the first 
neglected terms of the series. 

The leading term in one dimension was given in Ref. 3 with recourse 
to the relation between continuous diffusion and a discrete process. The 
leading term in two dimensions was given in Ref. 4 with the determinant of 
the covariance matrix of an equivalent walk that reaches all lattice points 
being one-fourth. In three dimensions the separable walk can be mapped 
into one that reaches all lattice points for which the determinant of the 
covariance matrix is one-sixteenth; the coefficient of n log n given in Ref. 5 
is then in exact agreement with that in (A.14). 

Table II. Asymptot ic  Formulas 

d = l  d=2 d=3 

n T, V, T, Vo T, Vo 

512 1.41957e + 03 1.16e + 02 4.14954e + 04 8.95e + 02 1.44029e + 05 2.28e + 02 
4096 1.~3565e + 04 9.26e + 02 1.66495e + 06 2.32e + 04 8.84447e + 06 3.66e + 03 
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For all n greater than 32, one observes the asymptotic ordering: that 
Vn is greatest in two dimensions, intermediate in three dimensions, and 
smallest in one dimension. Using the Chebyshev inequality, the probability 
that the absolute value of the difference between the range and En exceeds 
En/C is less than Vn(C/En) 2. Thus, in dimensions one through three the 
width of the probability distribution of the range divided by its expectation 
decreases as d increases, being negligible asymptotically for d>~2, and 
therefore the effect of the variance on a physical process dependent on the 
range is expected to decrease with increasing dimensionality. 

C O N C L U S I O N  

The formulas given above allow a refined calculation of the variance of 
the range of an arbitrary walk on a lattice with equivalent sites. Both the 
expectation and the variance may enter into a theory of a process which in 
fact depends on the distribution of the range. An example is the theory of 
the survival of a random walker on a lattice containing randomly placed 
traping sites. (1~ If one includes the effect of the variance in a theory based 
on the expectation of the range and the effect is small within the time 
period of interest, one thereby substantiates and improves the theory. Thus, 
the methods and results of this paper have direct applications in the for- 
mulation of diffusion limited processes. 
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A P P E N D I X  

It is convenient to use generating functions defined as follows 

 j(x)zJ,  j(x)z  . . . .  

j = l  j = l  

Equations (2) and (6) give 

F(x)=  [-2z/(1--z)]{[1 +P(o ) ]  - 1 -  [1 + P ( o ) + e ( x ) ] - l } ,  

= 0  

(A.1) 

x 4 0  

x = 0  (A.2) 
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From (2) 

F ( x ) = P ( x ) / [ I + P ( o ) ] < ~ I ,  0~<z~l  

thus with 1 >F(x),  (A.2) can be written as a geometric series 

P(x)= {2z/([l - z ] [ 1  --~-e(o)])) ~ (_)m {P(x)/[-1 -2~P(o)']}m+l 
rn=O 

p- >,=E2z/ l-z l s 
m=l  m=l  

59 

[ 1 .7t_ e ( o )  ] m 1 2 '  ( __ )m+l  [ - e ( x ) ] m  ; 
x 

(A.3) 

the primed summation is over all lattice points except the origin. 

One Dimension 

In one dimension ~1) 

and for k r  

P(0) = (1 - -Z2)  - 1 / 2 -  1 

P ( k )  = Xlkl( 1 -- z 2) -~/2 

with x =  [1 - (1 --22)1/2]/2. 
Substituting into (A.2) gives 

F=4z[ (1  + z)/(1 - z ) ]  1/2 ~ xJ/(1 + x  j) (A.4) 

The sum at the right in (A.4) is related, by changing the plus sign to a 
minus sign, to a power series of number theory, with the coefficient dj of x j 
being the number of divisors of j (including unity). Thus the asymptotic 
expansion (11) of the sum of first n dj gives the first term in the asymptotic 
expansion of the sum at the right of (A.4) in half-integral powers of (1 - z ) ,  
and using the Tauberian theorem given in Ref. 1. 

P j~  4n log 2 + O(n  I/2) 
j = l  

In one dimension En is asymptotically ~ 

E. ~ (8n/~)i/2 + O(n  - 1/2) (A.5) 
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Thus, to leading order, we can neglect the contribution of E,  to T~ [given 
in (5)] and 

Vn "-~ (4 log 2 - 8/re) n + O(n m)  

= 0.22610963,..., n + O(n m)  (A.6) 

Two Dimensions 

For the separable random walk, the generating function for P(x) at 
the point (0, 0) is simply related (7) to the complete elliptic integral K(z), 
and a double integral equals P(x) at all other points. ~1) In the limit that 
z -* 1 - ,  K(z) goes to infinity as �89 log[8/(1 - z)] + O[(1 - z) log(1 - z)]. 

It will be shown that to get the three leading terms in the asymptotic 
expansion of Vn, one needs the first five terms in the asymptotic expansion 
of Tn that are found from the leading order term in the expansion in 
powers and logarithms of each of the first five p(m). For ~Xl) through ~xs) 
one obtains the first term of the asymptotic expansions using the leading 
order behavior of P(x) for Ixl >> 1. ~8'12) 

P ( 1 ) ~ 2 7 c 2 ( 1 - - z )  2 { log[8 / (1 -z ) ]}  2 

p(2/~ _2rc2(1 _ z ) - 2  { log [8 / (1 -z ) ]}  3 

~ 3 ) ~  8a3~2(1 _ z)-2 {log[8/(1 - z)3 } - - 4  

p(4)..; _16a4~2( l_z )  2 { log [8 / (1 -z ) ]}  5 

p ( s )~32as~2 ( l_z )  2 { l o g [ 8 / ( l _ z ) ] }  6 (a.7) 

with 

;j a m = dr r[Ko(r)]  m 

a3 = 0.58597681,... a 4 = 1.0517998 .... a5 = 2.4965992 .... 

where Ko(r) is the modified Bessel function of order zero. The integrals al 
and a2 are 1 and 1 and a 3 can be transformed to a simpler integral 

a 3 =  - - ~ f ~  d x l o g x / ( 1 - x q - x 2 )  

Thus the exact equivalence of coefficient of the leading term of this solution 
with the previously given coefficient, ~4) which includes the latter integral, is 
easily proved. The numerical value of the integral is known. (13) The 
integrals am, m >~ 3, were performed numerically using the GAUS8 and 
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BESK0 routines from the Common Los Alamos National Laboratory 
Mathematical Software. 

The asymptotic behavior of the sum of the first n coefficients of the 
generating functions ~m) is found by dividing (A.7) by 1 - z  and saddle 
point integration using the method of Ref. 14. If a generating function has 
the form 

A ( 1 - z )  3 { l o g [ 8 / ( l _ z ) ] } - ,  

with A a constant, the asymptotic expansion for the nth coefficient is 

An2(log 8n + dy) - t  (y! ) - l ]y_  2 

where dy is differentiation with respect to y and the expression is to be 
expanded as a power series in dy/log 8n. Thus, (A.7) contains the con- 
tributions to the asymptotic expansion of T, of orders nZ[log(8n)] -2 
through nZ[log(8n)]-6, all neglected contributions to Tn being 
O{n2[log(8n)] 6}. Collecting terms gives 

T, .~ (Trn) 2 [-log(8n)]-2 { 1 + 0.84556867 ..... [-log(8n)]-1 

+ 0.94534482 ..... [log(8n)] - 2 _  4.3489012 ..... [log(8n)] 3 

+ 8.8781213 ..... [log(8n)] 4+ O[log(8n)] 5} (A.8) 

The leading terms in the expansion of E,  are those given ~14) for S, 

E, ~ ~n[-log(8n)] -1 {1 + 0.42278434 ..... Elog(8n)] -2 

-0.46618747 ..... [log(Sn)] 2_  1.1465466,..., [ log(8n)]-3 

- 0.58925976,., [log(8n)] 4 + O[-log(8n)] - 5 } (A.9) 

The first two terms in the expansions of Tn and (En) 2 are identical; 
therefore 

Vn~n2{16.768193,..., [-log(8n)] - 4 -  16.399478,..., Elog(8n)] -5 

+ 106.67852 ..... [log(8n)] -6 + O[log(Sn)] -7} (a.10) 

These methods will yield subsequent coefficients of the terms in this 
expansion. 
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T h r e e  D i m e n s i o n s  

P(0, 0, 0) is related to the square of the complete elliptic integral K(z'), 
and (~2) 

P(0, 0, 0 ) +  1 ~ 1.3932039,..., -0.90031632 ..... (1 - z )  ~/2 

+0.84205258,. ,  (1 - z )  + O(1 - z )  3/2 

= C O - -  C I ( 1  - z) 1/2 + C2(I  - -  Z) + O(1 - z )  3/2 (A.11) 

The leading terms in the asymptotic expansion of T n - E ,  in functions of 
1 - z  as z ~  1-  can be found by considering the ~m). _~1~ and p(2) are 
found from the triple integral (1) equal to P(x), and their expansions follow 
from (A.11). Including the origin in the summation over lattice points in 
(A.3) cancels when one considers ~ 1 ) +  p(2) 

~'(1) ..{_ ~'(2) ,-~ 2%2(1 _ z ) - 2  + 3c 1 Co-3(1 _ z )  3/2 

+ Co2{3c~co 2 - 2(c2/Co) - 4}(1 - z) 1 + 0(1 - z)-1/2 

With m~> 3, it is most direct to numerically perform the lattice sum 
indicated in (A.3). 

m = 4  

P(3)~ [ 2 / ( 1 - z )  c~ { R~>~'l,,i [P(x)/c~ z= 
x ;  ~ 1 

[8/c47za(1 - z)] log[1/(1 - z)]  - (0.8976,...)(1 - z ) - I  

pro) ~ [ - -2/ (1  --Z)CO] { ~ '  [P(x)/co]4/[ 1 -[-P(x)/Co] z =  

x ;  R ~ Ix l  1 

"{- (8/~2C 3) log(1 + 2/rtcoR)} 

-(0.14325,...)(1 - z) 1 

In both cases the summation with R >~ Ix[ was performed in two parts; 
for 32 ~> Ixl >/1, an integral for P(x)  with z = 1 was evaluated numerically. 
An asymptotic formula (8,12,15) for P(x)  for large ]xL = r 

P(x)] z= 1 ~ (2/rcr)[ 1 + (3/4r 2) -- (5/4r6)(x 4 + y4 + z 4) + O(r 4)] 
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was then used for 2048 ~> Ix[ ~> 32. The second term in the brace in each 
case results from using only the leading term in the asymptotic formula for 
P(x) given above and its analogue Is) for 1 > z and replacing the summation 
by integration for R = Fx] ~> 2048. The term containing log[l/(1 - z ) ]  is the 
resulting leading term in the asymptotic expansion of the exponential 
integral. There was no change in the first five places of the numerically 
derived coefficients whether R = 1024 or R = 2048. 

'Therefore, the generating function for T n -  E.  is 

s (T, - E n )  z ' ~  1.0303876,..., (1 - z )  -3 + 0.99878567 ..... (1 - z )  -5/2 

+0.21514511,..., ( 1 - z )  21og[1 / (1 -z ) ]  

- (0.8976~,..., +0.1432,..., +2.0381,...)(1 - z )  -2 

+ O(1 - z) -3/2 

with the coefficients and terms not given above arising from ~1) and ~2). 
The asymptotic expansion for T, is found by considering the asymptotic 
coeff• in the power series for the factors of (1 - z )  - j  in this equation 
except for the term containing l o g [ 1 / ( 1 - z ) ]  to which the Tauberian 
theorem of Ref. 1 is applied. One must also add the asymptotic 
expansion (12) for E,, 

E,  --~ 0.71777001,..., n + 0.52338443 ..... n m 

- 0.13407925 ..... + O(n - 1/2) (A. 12) 

T, ,,~ 0.51519379 . . . . .  n 2 + 0.75133930,., n 3/2 

+0.21514511 ..... n l o g n - O . 8 1 5 6 , . . . , n + O ( n  u2) (A.13) 

Since the first two terms in the expansions of (E,) 2 and Tn are identical 

V n ~ O . 2 1 5 1 4 5 1 1 , . . . , n l o g n - O . 8 9 7 0 , . . . , n + O ( n  u2) (A.14) 

COMPUTATION OF THE VARIANCE OF THE RANGE ( 3 - d )  

program var3 (tape3) 
parameter  (mff t=2**t5,nmax=2*2048,nmxt=2048,nsum=2*165,msmt=165) 
d imension p(nmax,nsmt) 
d imension C ( 0 : 4 ) , e ( n m a x ) , f ( n m a x ) , g ( n m a x ) , q l ( n m x t ) , q 2 ( n m x t ) , v ( n m a x )  
d imension w s a v e ( 4 * n f f t + 1 5 }  
complex p o ( n f f t ) ,  p x ( n f f t ) ,  p r ( n f f t ) ,  p t ( n f f t )  
C8]] ebm 
nmpo=mmax+l 
nstp=nsmt+l  
nmfo=nmax/4 
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c ( O ) = 9 6 . 0 / ( 1 . 0 - n f f t )  
c ( 1 ) = 4 8 . 0 / ( 1 . 0 ~ n f f t )  
c ( 2 ) = 1 6 . 0 / ( 1 . 0 * n f f t )  
c ( 3 ) = 2 4 . 0 / ( 1 . 0 * n f f t )  
c ( 4 ) : 1 2 . 0 / ( 1 . 0 ~ n f f t )  
do 10 n= l ,nmxt  
q l (n )=O.O 
q2(n)=O.O 

10 con t inue  
dO 20 n = l , n f f t  
po(n)=O.O 
p t (n )=0 .O  

20 con t inue  
q1(1)=0.5  
p (1 ,1 )=0 .5  
do 50 n=2.nmxt 
q 2 ( 1 ) = q t ( 1 )  
do 30 ~=2.n 
q 2 ( i ) = O . 5 ~ ( q l ( i - 1 ) + q l ( i ) )  

30 con t inue  
do 40 i=1,n 
q l ( i ) = 0 . 5 * ( q 2 ( i ) + q 2 ( i + l ) )  

40 con t i nue  
do 50 i = l , nsmt  
p ( 2 * n - 2 , i ) = q 2 ( i + l )  
p(2*n-l,i)=q1(i) 

50 continue 
do 60 i =2 ,ns tp  
p ( n m a x , i - 1 } = O . 5 * ( q l ( i - t ) + q l ( i ) )  

60 con t i nue  
po (1 )=1 .0  
do 70 n=2,nmax,2 
p o ( n + l ) = p ( n - l , 1 ) * * 3  

70 con t inue  
ca ] ]  c f f t i  ( n f f t , w s a v e )  
c a l l  c f f t f  ( n f f t , p o , w s a v e )  
do 80 n = l , n f f t  
p r { n ) = ( 1 . 0 / p o ( n ) )  

80 con t i nue  
c o e f f = c ( 4 )  
do 110 i = l , nsmt  
p x ( t ) = 0 . O  
do 90 n=3.nmax,2 
px(n-1)=O.O 
p x ( n ) = p ( n - l , i ) * p ( n - 2 , 1 ) ~ * 2  

90 con t i nue  
do 100 n=nmax,nfft 
p x ( n ) : 0 . O  

10{) continue 
c a l l  c f f t f  ( n f f t , p x , w s a v e )  
do 110 n = l , n f f t  
p t ( n ) = p t ( n ) + c o e f f , ( p r ( n ) - ( l . O / ( p o ( n ) + p x ( n ) ) ) )  

110 continue 
do 140 i=1,nsmt 
~0 140 j=1,1 
i j = s h i f t r ( ( t . e q . j ) , 6 3 )  
c o e f f = c ( l + 2 , i j )  
px[1)=O.O 
do 120 n=3,nmax,2 
px(n-1)=O.O 
p x ( n ) = p ( n - l , i ) * p ( n - l , j ) * p ( n - 2 , 1 )  

120 con t i nue  
do 130 n=nmax ,n f f t  
px(n)=O.O 

130 con t i nue  
c a l l  c f f t f  ( n f f t , p x , w s a v e )  
do 140 n = l , n f f t  
p t ( n ) = p t ( n ) + c o e f f * ( p r ( n ) - ( l . O / ( p o ( n ) + p x ( n ) ) ) )  

140 con t inue  
do 210 i=1,nsmt 
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dO 210 j : 1 , i  
dO 210 k : l , ]  
i j : s h i f t r ( ( i . e q , j ) , 6 3 )  
j k = s h i f t r ( ( j . e q . k ) , 6 3 )  
c o e f f : c ( i j + j k )  
do 150 n=2 ,nmax ,2  
p x ( n - l ) = O . O  
p x ( n ) = p ( n - l , i ) * p ( n - l , j ) * p ( n - l , k )  

150 c o n t i n u e  
do 160 n = n m p o , n f f t  
px (n )=O .O  

160 c o n t i n u e  
call  c f f t f  (nfft ,px,wsave) 
do 170 n=1,nfft  
p t ( n ) = p t ( n ) + c o e f f * ( p r ( n ) - ( 1 . O / ( p o ( n ) + p x ( n ) ) ) )  

170 c o n t i n u e  
px(1}=O.O 
do 180 n=3 ,nmax ,2  
p x ( n - l ) = O . O  
p x ( n ) = p ( n - l , i ) * p ( n - l , j ) ~ p ( n - l , k )  

180 c o n t i n u e  
do 190 n = n m a x , n f f t  
px (n )=O .O  

190 c o n t i n u e  
c a l l  c f f t f  (nfft ,px,wsave) 
dO 200 n = l , n f f t  
p t ( n ) = p t ( n ) + c o e f f , ( p r ( n ) - ( l . O / ( p o ( n ) + p x ( n ) ) ) )  

200 c o n t i n u e  
210 c o n t i n u e  

c a l l  c f f t b  ( n f f t , p t , w s a v e )  
f ( 2 ) = 0 . 1 2 5  
do 220 n=4 ,nmax ,2  
s=O.O 
dO 220 m=4 ,n ,2  
s = s + f ( m - 2 ) * p ( ( n + l ) - m , 1 ) = - 3  
f ( n ) = p ( n - l , 1 ) * * 3 - s  

220 c o n t i n u e  
e ( 1 ) = 1 . 0  
do 230 n=2,nmax 
f ( n ) = f ( n ) + f ( n - l )  
e ( n ) = l . O - f ( n - 1 )  

230 c o n t i n u e  
g (1 )=O.O 
do 240 n=2,nmax 
g ( n ) = g ( n - 1 ) + r e a t ( p t ( n ) )  
i f  ( m o d ( n , 4 ) . e q . O )  w r i t e  ( 3 , 2 9 0 )  g ( n - 3 ) , g ( n - 2 ) , g ( n - 1 ) . g ( n ) , n  

240 continue 
g ( 1 ) = 1 . 0  
do 250 n=2,nmax 
g ( n ) = g ( n ) + e ( n ) + g ( n - 1 )  
e ( n ) = e ( n ) + e ( n - 1 )  
v ( n ) = g ( n ) - e ( n ) * * 2  

250 c o n t i n u e  
do 260 n = l , n m f o  
w r i t e  ( 3 , 2 9 0 )  g ( 4 ~ n - 3 ) , g ( 4 = n - 2 ) , g ( 4 = n - 1 ) , g ( 4 ~ n ) , 4 * n  

260 c o n t i n u e  
do 270 n = l , n m x t  
w r i t e  ( 3 , 2 9 0 )  e ( 2 ~ n - 1 ) , e ( 2 * n - 1 ) * * 2 , e ( 2 * n ) , e ( 2 * n ) * * 2 , 2 = n  

270 c o n t i n u e  
do 280 n = l , n m f o  
w r i t e  ( 3 , 2 9 0 )  v ( 4 - n - 3 ) , v ( 4 * n - 2 ) , v ( 4 * n - 1 ) , v ( 4 ~ n ) , 4 ~ n  

280 c o n t i n u e  
s t o p  

290 f o r m a t  ( 4 ( 1 p e 2 0 . 1 2 , 2 x ) , i 5 )  
end 

The f u n c t i o n  c f f t f ( n , c , w s a v e )  c a l c u l a t e s  C ( j )  f o r  j = 1 , 2  . . . . .  n 
w i t h  C ( j ) = t h e  sum f rom k=O,1 . . . . .  n-1 o f  

C ( k ) * e x p ( - i * j * k * 2 * P I / n ) ,  
where i = s q r t ( - 1 ) .  
The f u n c t i o n  c f f t b  i s  i d e n t i c a l  e x c e p t  t h a t  - i  i s  r e p l a c e d  w i t h  i .  
The r e s u l t  i s  r e t u r n e d  in  t h e  i n p u t  v e c t o r .  The f u n c t i o n  c f f t i  
i n i t i a l i z e s  a r r a y s  used by c f f t f  and c f f t b .  These f u n c t i o n s  ape 
part of the Common Los Alamos Mathematical Software, 

822/44/1-2-5 
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